Comparative study of the binding pockets of mammalian proprotein convertases and its implications for the design of specific small molecule inhibitors

نویسندگان

  • Sun Tian
  • Wu Jianhua
چکیده

Proprotein convertases are enzymes that proteolytically cleave protein precursors in the secretory pathway to yield functional proteins. Seven mammalian subtilisin/Kex2p-like proprotein convertases have been identified: furin, PC1, PC2, PC4, PACE4, PC5 and PC7. The binding pockets of all seven proprotein convertases are evolutionarily conserved and highly similar. Among the seven proprotein convertases, the furin cleavage site motif has recently been characterized as a 20-residue motif that includes one core region P6-P2' inside the furin binding pocket. This study extended this information by examining the 3D structural environment of the furin binding pocket surrounding the core region P6-P2' of furin substrates. The physical properties of mutations in the binding pockets of the other six mammalian proprotein convertases were compared. The results suggest that: 1) mutations at two positions, Glu230 and Glu257, change the overall density of the negative charge of the binding pockets, and govern the substrate specificities of mammalian proprotein convertases; 2) two proprotein convertases (PC1 and PC2) may have reduced sensitivity for positively charged residues at substrate position P5 or P6, whereas the substrate specificities of three proprotein convertases (furin, PACE4, and PC5) are similar to each other. This finding led to a novel design of a short peptide pattern for small molecule inhibitors: [K/R]-X-V-X-K-R. Compared with the widely used small molecule dec-RVKR-cmk that inhibits all seven proprotein convertases, a finely-tuned derivative of the short peptide pattern [K/R]-X-V-X-K-R may have the potential to more effectively inhibit five of the proprotein convertases (furin, PC4, PACE4, PC5 and PC7) compared to the remaining two (PC1 and PC2). The results not only provide insights into the molecular evolution of enzyme function in the proprotein convertase family, but will also aid the study of the functional redundancy of proprotein convertases and the development of therapeutic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthetic small-molecule prohormone convertase 2 inhibitors.

The proprotein convertases are believed to be responsible for the proteolytic maturation of a large number of peptide hormone precursors. Although potent furin inhibitors have been identified, thus far, no small-molecule prohormone convertase 1/3 or prohormone convertase 2 (PC2) inhibitors have been described. After screening 38 small-molecule positional scanning libraries against recombinant m...

متن کامل

Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation

The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...

متن کامل

Fragment-based Binding Efficiency Indices in Bioactive Molecular Design: A Computational Approach to BACE-1 Inhibitors

One of the most important targets in Alzheimer disease is Beta site amyloid precursor protein cleaving enzyme-1 (BACE-1). It is a membrane associated protein and is one of the main enzymes responsible for amyloid β (Aβ) production. Up to now, a considerable number of peptidic and non-peptidic inhibitors of BACE-1 have been developed. Recently, small molecule BACE-1 inhibitors have attracted the...

متن کامل

Fragment-based Binding Efficiency Indices in Bioactive Molecular Design: A Computational Approach to BACE-1 Inhibitors

One of the most important targets in Alzheimer disease is Beta site amyloid precursor protein cleaving enzyme-1 (BACE-1). It is a membrane associated protein and is one of the main enzymes responsible for amyloid β (Aβ) production. Up to now, a considerable number of peptidic and non-peptidic inhibitors of BACE-1 have been developed. Recently, small molecule BACE-1 inhibitors have attracted the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010